|国家科技期刊平台
首页|期刊导航|机器人|面向高机动飞行的旋翼气动模型构建方法

面向高机动飞行的旋翼气动模型构建方法OA北大核心CSTPCD

Rotor Aerodynamic Modeling Method for High-maneuvering Flight

中文摘要英文摘要

旋翼气动机理复杂、变量耦合严重,如何在线准确估计旋翼气动力是实现旋翼飞行机器人高机动安全自主飞行的关键问题之一.为此,本文提出了一种基于叶素动量理论的集成参数模型构建方法,结合参数集成的思想,将叶素动量模型中的叶素积分式简化为代数式,以提升计算效率并降低参数辨识的复杂度,同时保留旋翼诱导速度为状态变量,避免了近似悬停飞行状态假设,使模型能够适应高速高机动的飞行状态.基于实机机动飞行数据的仿真实验结果表明,该方法构建的模型相较于常见的集成参数模型和仅基于叶素动量理论的模型,整体旋翼气动合力预测误差分别同比降低20%和50%,且与仅基于叶素动量理论的模型相比计算效率提升显著.

The aerodynamic mechanisms of rotors are complex,with significant coupling of variables.How to accurately estimate rotor aerodynamic force online becomes one of the key problems of achieving safe autonomous flight of rotor-wing flying robots in high-maneuvering.Therefore,a lumped-parameterized modeling method based on blade element momentum(BEM)theory is proposed.Drawing upon the concept of parameter lumping,the blade element integral formula of BEM model is simplified into algebraic form to improve model computational efficiency and reduce the difficulty of parameter identification.And by retaining the induced velocity of the rotor as a state variable,the resulting model avoids the assumption of quasi-static flight condition,enabling it to adapt to high-speed and high-maneuvering flight states.Simulation results based on real-world maneuvering flight data indicate that the resulting model,compared to both the common lumped parameter model and the model based solely on blade element momentum theory,reduces prediction errors of overall rotor aerodynamic force by 20%and 50%,respectively,with significantly increased computational efficiency compared to the model based solely on blade element momentum theory.

包一峰;谷丰;杜心田;于利;何玉庆

中国科学院沈阳自动化研究所机器人学国家重点实验室,辽宁沈阳 110016||中国科学院机器人与智能制造创新研究院,辽宁沈阳 110169||中国科学院大学,北京 100049中国科学院沈阳自动化研究所机器人学国家重点实验室,辽宁沈阳 110016||中国科学院机器人与智能制造创新研究院,辽宁沈阳 110169

旋翼无人机旋翼气动力叶素动量理论集成参数多旋翼无人机

rotorcraftrotor aerodynamicsblade element momentum theorylumped parametermultirotor unmanned aerial vehicle

《机器人》 2024 (004)

385-396 / 12

国家自然科学基金(U22B2041,61991413,61821005);中国科学院青年创新促进会项目(Y2022065).

10.13973/j.cnki.robot.230330

评论