| 注册
首页|期刊导航|机器人|基于三分支混合特征提取的双目立体匹配算法

基于三分支混合特征提取的双目立体匹配算法

范诗萌 孙炜 覃宇 覃业宝 胡曼倩 刘崇沛

机器人2024,Vol.46Issue(4):414-424,11.
机器人2024,Vol.46Issue(4):414-424,11.DOI:10.13973/j.cnki.robot.230235

基于三分支混合特征提取的双目立体匹配算法

A Binocular Stereo Matching Algorithm Based on Three-branch Hybrid Feature Extractor

范诗萌 1孙炜 2覃宇 3覃业宝 1胡曼倩 1刘崇沛1

作者信息

  • 1. 湖南大学电气与信息工程学院,湖南长沙 410082
  • 2. 湖南大学电气与信息工程学院,湖南长沙 410082||湖南大学整车先进设计制造技术全国重点实验室,湖南长沙 410082
  • 3. 长沙理工大学计算机与通信工程学院,湖南长沙 410076
  • 折叠

摘要

Abstract

Binocular stereo matching algorithms based on deep learning usually use convolutional neural network(CNN)to extract features.However,it has inherent limitations such as limited receptive field and weight sharing of convolution kernels,making it difficult to extract features with strong recognition,and resulting in lower matching accuracy in challenging regions,such as weak-textured regions and detailed regions.To solve this problem,a binocular stereo matching algorithm based on three-branch hybrid feature extractor is proposed.Specifically,the CNN branch,Swin Transformer branch,and fusion branch are set in parallel,and feature extraction is performed on the left and right images.The parallel branch setting effectively preserves the local feature expression ability of CNN and the global feature expression ability of Swin Transformer framework.The fusion branch is composed of multi-stage global-local information adapters.It can not only realize the fusion and expression of global information and local information in this stage,but also effectively realize the propagation of features across different stages.Moreover,the strong correlation feature information suitable for weak-textured regions and detailed regions is screened out,thus enhancing stereo matching accuracy.Ablation experiments on the SceneFlow dataset verify the effectiveness of the proposed algorithm.SceneFlow,KITTI 2012,and KITTI 2015 datasets are used for tests.The proposed method achieves 0.652 pixel as end point error(EPE)on SceneFlow dataset,and 0.79%as the percentage of pixels in non-occluded regions with disparity error greater than 5 pixels on KITTI 2012 dataset.Results show that the proposed algorithm has an excellent stereo matching accuracy.

关键词

双目立体匹配/卷积神经网络/特征提取/局部特征/全局特征

Key words

binocular stereo matching/convolutional neural network/feature extraction/local feature/global feature

引用本文复制引用

范诗萌,孙炜,覃宇,覃业宝,胡曼倩,刘崇沛..基于三分支混合特征提取的双目立体匹配算法[J].机器人,2024,46(4):414-424,11.

基金项目

国家自然科学基金(U22A2059). (U22A2059)

机器人

OA北大核心CSTPCD

1002-0446

访问量0
|
下载量0
段落导航相关论文