多源车载数据驱动的地铁轨道不平顺智能识别方法OA北大核心CSTPCD
Multi-source onboard data-driven method for intelligent identification of subway track irregularities
针对轨道不平顺检测成本高与时效性低等不足,从车辆动态响应与轨道不平顺之间的相关性为切入点,提出一种多源车载数据驱动的轨道不平顺智能识别方法.首先,建立地铁车辆系统动力学模型,获取车辆振动与运动姿态响应数据;其次,通过相关性分析算法,选取强相关性数据,制作网络模型数据集;最后,建立卷积神经网络-长短期记忆网络(CNN-LSTM),通过粒子群算法优化(PSO)神经网络模型参数,建立PSO-CNN-LSTM模型,实现对轨道不平顺的识别拟合.研究结果表明:在车辆动态响应信号中,与横向信号与轨道不平顺之间的相关性相比,垂向信号的更强,同时,车体的运动姿态如车体点头角速度与不平顺有明显的相关性.所提出的PSO-CNN-LSTM模型轨道垂向与横向不平顺识别拟合度分别达0.92和0.76.与经典的全连接神经网络FCNN和支持向量机SVR相比,PSO-CNN-LSTM有更好的识别效果与时效性.
To address the shortcomings of high-cost and poor-timeliness of track irregularity detection,an intelligent track irregularity identification method with multi-source vehicle data drive based on the correlation between vehicle dynamic responses and track irregularities was proposed.Firstly,a subway vehicle system dynamic model was established to obtain the data of vehicle vibration and motion attitude.Secondly,strong correlation data were selected through correlation analysis algorithm to make the dataset of network model.Finally,a network model was established through the combination of the convolutional neural network(CNN)and the long short-term memory network(LSTM)to detect track irregularities.A particle swarm optimization(PSO)method was used to optimize the neural network parameters.The results show that the vertical accelerations of the vehicle have a stronger correlation with the track irregularities compared to the lateral accelerations of the vehicle.At the same time,the motion attitudes of the car body,such as the angular velocity of pitch,have an significant correlation with the track irregularities.The proposed PSO-CNN-LSTM model has good performance in identifying track irregularities,and the determination coefficient of vertical and lateral track irregularities identification is 0.92 and 0.76,respectively.Moreover,the proposed method,namely PSO-CNN-LSTM,has better accuracy and timeliness than the classical fully connected neural network(FCNN)and support vector machine(SVR).
彭飞;谢清林;陶功权;温泽峰;任愈
西南交通大学轨道交通运载系统全国重点实验室,四川成都,610031
交通运输
轨道交通车辆动力学轨道不平顺神经网络智能识别
rail transportationvehicle dynamicstrack irregularitiesneural networkintelligent identification
《中南大学学报(自然科学版)》 2024 (006)
2432-2445 / 14
国家自然科学基金资助项目(U21A20167);四川省科技计划项目(2023YFQ0091,2023YFH0049)(Project(U21A20167)supported by the National Natural Science Foundation of China;Projects(2023YFQ0091,2023YFH0049)supported by the Science and Technology Plan of Sichuan Province
评论