|国家科技期刊平台
首页|期刊导航|信息工程大学学报|改进移动加密流量分类的方法——数据质量分数

改进移动加密流量分类的方法——数据质量分数OA

Method to Improve Mobile Encryption Traffic Classification——Data Quality Score

中文摘要英文摘要

移动互联网的飞速发展使得针对移动加密流量的分类需求激增.深度学习分类方法依赖数据特征,但不同数据的特征量存在差异,均匀分配权重易降低性能.为此,提出一种称为数据质量分数(DQS)的方法来区分数据,并在损失函数中使用不同权重来减少低质量数据对模型参数的干扰,同时提升高质量数据的作用.通过Mirage-2019数据集上的实验验证该方法的有效性,首先对该数据集进行统计分析,确定特征选择;然后构建包含不同神经网络结构的分类模型进行实验,并加入DQS方法进行前后性能对比.5折交叉验证的结果表明,加入DQS方法后,不同网络模型的分类性能均有提升,且训练时间没有明显增加.

The rapid development of mobile internet has led to a surge in demand for classifying en-crypted mobile traffic.Deep learning classification methods rely on data features,but there are differ-ences in the feature quantities of different data,and evenly distributing weights may decrease perfor-mance.To address this issue,we propose a method—Data Quality Score(DQS)to differentiate data and use different weights in the loss function to reduce the interference of low-quality data on model parameters,while enhancing the effect of high-quality data.The effectiveness of this method is verified through experiments on the Mirage-2019 dataset.We first conduct statistical analysis on this dataset to determine feature selection.Then,we build classification models with different neural network struc-tures for experiments and compare their performance with and without DQS method.Results of 5-fold cross-validation indicate that after incorporating the DQS method,the classification performance of dif-ferent network models has been improved without apparent increase in training time.

程槟;魏福山;顾纯祥

河南省网络密码技术重点实验室,河南 郑州 450001

计算机与自动化

深度学习加密流量分类移动应用程序数据质量分数Mirage-2019数据集损失函数5折交叉验证

deep learningencrypted traffic classificationmobile appsdata quality scoreMirage-2019 datasetloss function5-fold cross-validation

《信息工程大学学报》 2024 (004)

459-465 / 7

国家自然科学基金(61772548);河南省优秀青年基金(222300420099)

10.3969/j.issn.1671-0673.2024.04.014

评论