|国家科技期刊平台
首页|期刊导航|水利学报|基于分布式产流要素和时空深度学习算法的径流后处理研究

基于分布式产流要素和时空深度学习算法的径流后处理研究OA北大核心CSTPCD

Streamflow post-processing based on distributed hydrological fluxes and spatio-temporal deep learning algorithm

中文摘要英文摘要

准确的径流模拟是流域水资源管理和区域综合政策制定的重要前提.为提高径流模拟的精度,本文以浙江省台州市永安溪流域为研究区域,基于2010-2019年柏枝岙站出口断面的实测日径流数据和网格化HBV模型(Grid-HBV)的模拟结果,提出了一种耦合卷积神经网络CNN和长短期记忆网络LSTM的CNN-LSTM时空后处理模型;构建了基于单一产流要素的s-CNN-LSTM模型和基于两种产流要素的bi-CNN-LSTM模型,并与基准模型s-LSTM开展径流后处理和比较分析.研究结果表明:Grid-HBV模型率定期和验证期的纳什效率系数(NSE)分别为0.78和0.81,整体径流模拟效果较好,但存在中、高水低估和低水高估的不足.经s-LSTM模型后处理后,率定期和验证期NSE提升至0.87和0.85,提升幅度为11.2%和5.8%;s-CNN-LSTM模型后处理后NSE分别为0.90和0.89,提升幅度为14.6%和10.9%.bi-CNN-LSTM模型后处理后率定期和验证期NSE皆达到0.92,提升幅度为17.2%和14.2%,比s-LSTM模型的提升幅度分别大6.0%和8.4%,且该模型对原模拟径流高、中、低各流量等级中的局部缺陷有针对性改善.在4个典型洪水事件的分析中,bi-CNN-LSTM模型总体后处理效果最好,与Crid-HBV模型模拟结果相比,各洪峰误差平均减小36.6%,s-LSTM模型和s-CNN-LSTM模型则平均额外减小了19.3%和30.3%.基于分布式产流要素的CNN-LSTM模型具有较好的径流后处理能力,能够显著提高水文模型径流模拟效果,有助于流域水文水资源的科学管理.

Accurate simulation of streamflow is a crucial prerequisite for water resources management and regional integrated policy making.In order to improve the accuracy of streamflow simulation,this study takes Yonganxi Riv-er Basin in Taizhou,Zhejiang Province as the study area.A CNN-LSTM spatio-temporal post-processing model by coupling CNN with LSTM is proposed based on the measured daily discharge data at Baizhi'ao Station from 2010 to 2019 and hydrological fluxes simulated by the Grid-HBV model.We construct two post-processing models,namely CNN-LSTM with single flux(s-CNN-LSTM)and CNN-LSTM with double fluxes(bi-CNN-LSTM).Their performance is compared and analyzed with a benchmark model(s-LSTM).The results show that the NSE of the Grid-HBV model during the calibration and validation periods are 0.78 and 0.81,respectively,indicating an over-all good runoff simulation.However,there are underestimation in medium and high flow and overestimation in low flow simulations.After post-processing,the NSE of s-LSTM in the two study periods are 0.87 and 0.85,with an increase of 11.2%and 5.8%,and the NSE of s-CNN-LSTM are 0.90 and 0.89,with an increase of 14.6%and 10.9%.The NSE of bi-CNN-LSTM in the two study periods both reach 0.92,with an increase of 17.2%and 14.2%.Compared to the s-LSTM model,the bi-CNN-LSTM model presents a further enhancement of 6.0%and 8.4%in accuracy.In addition,the bi-CNN-LSTM model can markedly improve the defects of original simulation in the high,medium and low flows.For four typical flood events,the bi-CNN-LSTM model has the best post-processing effect,which reduces the flood peak error by 36.6%on average,the s-LSTM model and the s-CNN-LSTM model reduces the flood peak error by 19.3%and 30.3%on average.In summary,the CNN-LSTM model based on dis-tributed hydrological fluxes has a good ability of streamflow post-processing,which can significantly improve the streamflow simulations of hydrological models.

吴垚;许月萍;刘莉;何柯琪

浙江大学建筑工程学院水科学与工程研究所,浙江杭州 310058杜克大学尼古拉斯环境学院地球与气候科学研究所,美国北卡罗来纳州达勒姆27708

水利科学

径流后处理CNN-LSTM深度学习网格化HBV水文模型椒江流域

post-processingCNN-LSTMdeep learninggrid HBV hydrological modelJiao River basin

《水利学报》 2024 (009)

1123-1134 / 12

浙江省重点研发项目(2021C03017);浙江省自然基金重点项目(Z20E090005);国家重点研发计划项目(2021YFD1700802);国家自然科学基金项目(52309038)

10.13243/j.cnki.slxb.20230662

评论