基于HHO优化的时空水质预测模型OACSTPCD
Spatio-temporal water quality prediction model based on HHO optimization
我国水资源现状不容乐观,提高水质预测模型精度对水资源质量监测具有重要意义.为捕捉水质指标时序数据非线性变化趋势,水质指标多基于神经网络模型进行预测.但是现有模型忽略了河流流向,没有考虑上游监测点水质对下游水质的影响;同时现有模型多基于启发式优化算法中的粒子群算法调整神经网络的超参数,但该优化算法仍需设置较多超参数,而参数选取不当容易使模型陷入局部最优.为此,建立了时空水质预测模型(WT-CNN-LSTM-HHO),利用哈里斯鹰优化算法(HHO),基于上游水质数据预测下游的氮、磷和溶解氧水质指标.实验结果显示,本文所提出的模型对水质预测性能有明显提升,可以实现设置较少超参数而达到较高的水质预测精度.
The current situation of water resource is not optimistic,so improving the accuracy of water quality prediction models is important for water quality monitoring.In order to capture the nonlinear trend of time series data of water quality index,water quality index is mostly predicted based on neural network model.However,the existing models ignore the flow direction of the river and do not consider the influence of the water quality of the upstream monitoring points on the downstream water quality.Meanwhile,existing models mostly adjust the hyperparameters of neural networks based on the particle swarm optimization algorithm in heuristic optimization algorithms.However,the optimization algorithm still needs to set many super parameters,and improper parameter selection can easily make the model fall into local optimization.A spatio-temporal water quality prediction model(WT-CNN-LSTM-HHO)is established,Harris Hawk optimization algorithm(HHO)is used to predict downstream water quality indexes of nitrogen,phosphorus and dissolved oxygen based on upstream water quality data.The experimental results show that the proposed model can significantly improve the performance of water quality prediction,and can set fewer super-parameters and achieve higher water quality prediction accuracy.
李顺勇;张睿轩;谭红叶
山西大学 数学科学学院, 山西 太原 030006山西大学 计算机与信息技术学院, 山西 太原 030006
电子信息工程
时空水质预测哈里斯鹰优化算法LSTM神经网络时间序列CNN-LSTM小波降噪
water quality predictionHHOLSTM neural networktime seriesCNN-LSTMwavelet denoising
《现代电子技术》 2024 (002)
176-182 / 7
国家自然科学基金项目(82274360);国家自然科学基金项目(61976128);2022年度山西省研究生教育教学改革课题(2022YJJG010)
评论