| 注册
首页|期刊导航|计算机应用与软件|基于集成LSTM自编码器的多维时间序列异常检测

基于集成LSTM自编码器的多维时间序列异常检测

李亚静 霍纬纲 丁磊

计算机应用与软件2024,Vol.41Issue(1):285-290,6.
计算机应用与软件2024,Vol.41Issue(1):285-290,6.DOI:10.3969/j.issn.1000-386x.2024.01.041

基于集成LSTM自编码器的多维时间序列异常检测

MULTIVARIATE TIME SERIES ANOMALY DETECTION METHOD BASED ON LSTM AUTOENCODER ENSEMBLE

李亚静 1霍纬纲 1丁磊1

作者信息

  • 1. 中国民航大学计算机科学与技术学院 天津 300300
  • 折叠

摘要

Abstract

Aimed at the problem that the long-short term memory AutoEncoder(LSTM-AE)is inefficient in anomaly detection on multivariate time series(MTS),a model named LSTM-AE Ensemble(LAE)is proposed.LAE integrated multiple LSTM-AEs to reconstruct each sub-sequence of normal MTS,and treated each reconstruction error as a local feature of the MTS.A fully connected network AutoEncoder(FCAE)was used to fit the reconstruction error data,so that LAE could capture the global features of MTS data.Anomaly detection was carried out according to the reconstruction error of FCAE.Experiments on three public MTS datasets show that compared with the benchmark method,LAE has better MTS anomaly detection performance with the maximum improvement 0.058 4,0.118 4,and 0.078 6 respectively on the terms of Precision,Recall,and F1_score.

关键词

多维时间序列/异常检测/LSTM-AE/集成学习

Key words

Multivariate time series/Anomaly detection/LSTM-AE/Ensemble learning

分类

计算机与自动化

引用本文复制引用

李亚静,霍纬纲,丁磊..基于集成LSTM自编码器的多维时间序列异常检测[J].计算机应用与软件,2024,41(1):285-290,6.

基金项目

中央高校基本科研业务费项目中国民航大学专项(3122019190). (3122019190)

计算机应用与软件

OACSTPCD

1000-386X

访问量12
|
下载量0
段落导航相关论文