一类具有双时滞的捕食模型的稳定性和Hopf分支OA
Stability and Hopf Bifurcation of a Predator-Prey Model with Dual Time-Delay
建立了一类具有B-D型功能反应和不同避难行为的双时滞捕食模型,并以时滞作为参数,分析了模型在不同时滞情况下正平衡点的稳定性和Hopf分支.研究结果表明,当时滞等于相应的临界值时,模型在正平衡点处发生Hopf分支,且正平衡点的稳定性发生改变.
A dual time-delay predator-prey model with B-D functional response and different refuge behav-iors is established,and the stability and Hopf bifurcation of the positive equilibrium of the model with different time-delays are analyzed.The research shows that when the time-delay is equal to the corre-sponding critical value,Hopf bifurcation occurs at the positive equilibrium of the model,and the stability of the positive equilibrium changes.
张美杨;谢景力;郭红利
吉首大学数学与统计学院,湖南吉首 416000吉首大学数学与统计学院,湖南吉首 416000吉首大学数学与统计学院,湖南吉首 416000
数学
时滞捕食模型稳定性Hopf分支
time-delaypredator-prey modelstabilityHopf bifurcation
《吉首大学学报(自然科学版)》 2024 (2)
9-17,9
湖南省教育厅科学研究重点项目(22A0368)吉首大学研究生校级科研项目(JDY22011)
评论