|国家科技期刊平台
首页|期刊导航|重庆理工大学学报|自适应时域模型预测控制的轨迹跟踪控制

自适应时域模型预测控制的轨迹跟踪控制OA北大核心CSTPCD

Research on trajectory tracking control of autonomous vehicle based on MPC with variable predictive horizon

中文摘要英文摘要

为了提高自动驾驶车辆轨迹跟踪精度、稳定性和控制器对不同工况的自适应能力,提出了一种模糊自适应预测时域参数模型预测控制轨迹跟踪控制算法.建立车辆运动学模型与模型预测控制器,以实时车速和航向角偏差为模糊输入,通过模糊控制在线优化MPC的预测时域参数和Carsim/Simulink联合仿真,分别在沥青路面和雨雪路面对不同车速的轨迹跟踪控制仿真.仿真结果表明,车辆在沥青路面下,与固定预测时域参数MPC控制器相比,自适应时域MPC控制器纵向绝对偏差均值在低速和高速下分别降低63.16%、55.28%,有效提高了车辆轨迹跟踪精度.车辆在雨雪路面下,低速或中高速时自适应时域控制器最大质心侧偏角均在1°以内,确保车辆控制的鲁棒性.

To improve the trajectory tracking accuracy and stability of the self-driving vehicle, and the adaptive ability of the controller in different working conditions, this paper proposes a fuzzy adaptive prediction time domain parameter model predictive control trajectory tracking control algorithm.Firstly, the vehicle kinematics model and model predictive controller are built.Secondly, the real-time vehicle speed and heading angle deviation are taken as fuzzy inputs.The predictive time-domain parameters of MPC are optimized online through fuzzy control.The trajectory tracking control simulations with different vehicle speeds are conducted on asphalt pavement and rainy and snowy pavement through the joint simulation of Carsim/Simulink respectively.Our simulation results show compared with the fixed prediction time domain parameter MPC controller, the mean value of the longitudinal absolute deviation of adaptive time domain MPC controller reduces by 63.16% and 55.28% at low and high speeds respectively, effectively improving the trajectory tracking accuracy of vehicles on asphalt road.Meanwhile, the adaptive time domain controller' s maximum sideslip angle is within 1° at low or medium-high speeds under rainy and snowy road surfaces, ensuring the robustness of vehicle control.

陈梓宁;童亮;李晓东;刘艺;徐子丰

北京信息科技大学 机电工程学院, 北京 100192

交通运输

智能车辆轨迹跟踪自适应模型预测控制

automatic drivetrajectory trackingadaptivemodel predictive control

《重庆理工大学学报》 2024 (009)

78-85 / 8

北京市自然科学基金项目(3192014)

10.3969/j.issn.1674-8425(z).2024.05.010

评论