| 注册
首页|期刊导航|高技术通讯|基于粒子群算法的6自由度机械臂动力学模型参数辨识

基于粒子群算法的6自由度机械臂动力学模型参数辨识

禹鑫燚 詹益安 洪学劲峰 欧林林

高技术通讯2017,Vol.27Issue(7):625-632,8.
高技术通讯2017,Vol.27Issue(7):625-632,8.DOI:10.3772/j.issn.1002-0470.2017.07.006

基于粒子群算法的6自由度机械臂动力学模型参数辨识

Parameter identification of a dynamic model for 6 DoF manipulators based on PSO algorithm

禹鑫燚 1詹益安 1洪学劲峰 1欧林林1

作者信息

  • 1. 浙江工业大学信息工程学院 杭州310000
  • 折叠

摘要

Abstract

A method for identification of industrial robots' dynamical parameters based on the particle swarm optimization ( PSO) algorithm is presented.The method uses the modified Newton-Euler method to constructs manipulators' lin-ear dynamical model which considers joint friction, and then, establishes an algorithm based on PSO for estimation of unknown dynamical parameters.Identification experiments are carried out for a UR industrial robot.The dynam-ic parameter estimation of the UR industrial robot is achieved by designing the excitation trajectories to excite joint motion of industrial robots and sampling relevant data.The dynamical model is validated according to the torque prediction accuracy.The experimental results show that the identification of dynamical model parameters using the proposed algorithm is accurate and effective.

关键词

工业机器人/动力学模型/参数辨识/粒子群优化(PSO)算法

Key words

industrial robot/dynamical model/parameter identification/particle swarm optimization ( PSO) algorithm

引用本文复制引用

禹鑫燚,詹益安,洪学劲峰,欧林林..基于粒子群算法的6自由度机械臂动力学模型参数辨识[J].高技术通讯,2017,27(7):625-632,8.

基金项目

863计划(2014AA041601-05),国家自然科学基金(61273116),浙江省自然科学基金(LY15F030015),浙江省公益项目(2016C31064)和宁波重点项目(2014B10017)资助. (2014AA041601-05)

高技术通讯

OA北大核心CSTPCD

1002-0470

访问量0
|
下载量0
段落导航相关论文