基于粒子群算法的6自由度机械臂动力学模型参数辨识OA北大核心CSTPCD
Parameter identification of a dynamic model for 6 DoF manipulators based on PSO algorithm
提出了基于粒子群优化(PSO)算法的工业机器人动力学参数辨识方法.首先利用改进的牛顿-欧拉方法,建立考虑关节摩擦的机械臂线性动力学模型,然后引入PSO算法,建立基于PSO算法的估计未知动力学参数的算法,最后以UR工业机器人为实验对象,通过设计激励轨迹,激励工业机器人关节运动,并对关节运动参数进行采样,实现UR工业机器人的动力学参数估计,并根据力矩预测精度验证动力学模型.实验证明了所提出算法辨识工业机器人动力学模型参数的准确性和有效性.
A method for identification of industrial robots' dynamical parameters based on the particle swarm optimization ( PSO) algorithm is presented.The method uses the modified Newton-Euler method to constructs manipulators' lin-ear dynamical model which considers joint friction, and then, establishes an algorithm based on PSO for estimation of unknown dynamical parameters.Identification experiments are carried out for a UR industrial robot.The dynam-ic parameter …查看全部>>
禹鑫燚;詹益安;洪学劲峰;欧林林
浙江工业大学信息工程学院 杭州310000浙江工业大学信息工程学院 杭州310000浙江工业大学信息工程学院 杭州310000浙江工业大学信息工程学院 杭州310000
工业机器人动力学模型参数辨识粒子群优化(PSO)算法
industrial robotdynamical modelparameter identificationparticle swarm optimization ( PSO) algorithm
《高技术通讯》 2017 (7)
基于多时滞反馈的多智能体协同控制策略研究
625-632,8
863计划(2014AA041601-05),国家自然科学基金(61273116),浙江省自然科学基金(LY15F030015),浙江省公益项目(2016C31064)和宁波重点项目(2014B10017)资助.
评论